Answer:[tex]M=49.95\times 10^{26} kg[/tex]
Explanation:
Given
[tex]N=50 rev/s[/tex]
[tex]\omega =2\pi N[/tex]
[tex]\omega =2\pi \cdot 50=314.2 rad/s[/tex]
radius of neutron star [tex]r=15 km[/tex]
Centripetal force on material having mass m is given by
[tex]F_c=\frac{mv^2}{r}[/tex]
Gravitational Force between neutron star and mass m is
[tex]F_g=\frac{GMm}{r^2}[/tex] ,where M=mass of Neutron star
equating centripetal Force and Gravitational Pull
[tex]\frac{mv^2}{r}=\frac{GMm}{r^2}[/tex]
[tex]M=\frac{v^2r}{G}[/tex]
[tex]M=\frac{\omega ^2r^3}{G}[/tex]
[tex]M=\frac{(314.2)^2\times (15000)^3}{6.67\times 10^{-11}}[/tex]
[tex]M=\frac{0.4995\times 10^17}{10^{-11}}[/tex]
[tex]M=49.95\times 10^{26} kg[/tex]