Certain neutron stars (extremely dense stars) are believed to be rotating at about 50 rev/s. If such a star has a radius of 15 km, what must be its minimum mass so that material on its surface remains in place during the rapid rotation?

Respuesta :

Answer:[tex]M=49.95\times 10^{26} kg[/tex]

Explanation:

Given

[tex]N=50 rev/s[/tex]

[tex]\omega =2\pi N[/tex]

[tex]\omega =2\pi \cdot 50=314.2 rad/s[/tex]

radius of neutron star [tex]r=15 km[/tex]

Centripetal force on material having mass m is given by

[tex]F_c=\frac{mv^2}{r}[/tex]

Gravitational Force between neutron star and mass m is

[tex]F_g=\frac{GMm}{r^2}[/tex]  ,where M=mass of Neutron star

equating centripetal Force and Gravitational Pull

[tex]\frac{mv^2}{r}=\frac{GMm}{r^2}[/tex]

[tex]M=\frac{v^2r}{G}[/tex]

[tex]M=\frac{\omega ^2r^3}{G}[/tex]

[tex]M=\frac{(314.2)^2\times (15000)^3}{6.67\times 10^{-11}}[/tex]

[tex]M=\frac{0.4995\times 10^17}{10^{-11}}[/tex]

[tex]M=49.95\times 10^{26} kg[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico