Respuesta :
Answer:
a)1.93 kg-m^2
b) 1.45 kg-m^2
c) = 0
d) 1.15 kg-m^2
Explanation:
mass of the bar M = 4 kg
length of the bar = 2 m
mass of balls m1= m2= 0.3 kg
moment of inertia of bar [tex]I= \frac{ML^2}{12}[/tex]
about an axis perpendicular to the bar through its center.
a) MOI of bar + 2×m×(L/2)^2
[tex]I= \frac{ML^2}{12}[/tex]+ [tex]2m\frac{L}{2}^2[/tex]
now putting the values of m, M and L as above and solving we get
I= 1.93 kg-m^2
b) perpendicular to the bar through one of the balls
[tex]I=M\frac{L^2}{3} +mL^2[/tex]
[tex]I=4\frac{2^2}{3} +0.3\times4^2[/tex]= 1.45 kg-m^2
c) parallel to the bar through both balls
zero as the no mass distribution along the parallel to the bar through both balls.
d) parallel to the bar and 0.500 m from it.
I=[tex](M+2m_1)\frac{1}{2}^2[/tex]
putting values and solving we get
1.15 kg-m^2
The moment of inertia of the rod ball system as the mass and distance
from axis of rotation increases.
The correct responses for the moment of inertia are;
(a) Perpendicular the bar and through the bar's center; [tex]\underline{1.9\overline 3 \ kg\cdot m^2}[/tex]
(b) Perpendicular the bar and through the ball [tex]\underline{10.1\overline 3 \ kg \cdot m^2}[/tex]
(c) 0
(d) Parallel to the bar 1.15 kg·m²
Reasons:
(a) The moment of inertia of the bar perpendicular to the bar through its
center is given by, the equation;
[tex]I_{\perp \odot } = I_{bar} + I_{ball \ on \ left} + I_{ball \ on \, right} = \dfrac{1}{12} \cdot m_{bar}\cdot L^2 + m \cdot r^2 + m \cdot r^2[/tex]
Therefore;
[tex]I_{\perp \odot }= \dfrac{1}{12} \times 4\times 2^2 + 0.3 \times 1^2 + 0.3 \times 1^2 = \dfrac{29}{15} \approx 1.9\overline 3[/tex]
[tex]I_{\perp \odot } \approx \underline{1.9\overline 3 \ kg\cdot m^2}[/tex]
(b) The moment of inertia perpendicular to the bar through one of the balls is perpendicular to the bar through one of the ends is given as follows;
[tex]I_{\perp end } = \dfrac{1}{3} \cdot m_{bar} \cdot L^2 + m\cdot L^2 + m\cdot 0^2[/tex]
[tex]I_{\perp end } = \dfrac{1}{3} \times 4\times 2^2 + 0.3\times 4^2 + m\cdot 0^2 = 10.1\overline 3[/tex]
[tex]I_{end \perp } = \underline{10.1\overline 3 \ kg \cdot m^2}[/tex]
(c) The moment of inertia through the balls and parallel to the bar is the moment of inertia through the axis of the bar, given as follows;
[tex]I_{CM} = \dfrac{1}{2} \cdot m_{bar} \cdot r_{bar}^2 + 2 \times \dfrac{2}{5} \cdot m_{ball} \cdot r_{ball}^2[/tex]
[tex]r_{bar}[/tex] = 0
[tex]r_{ball}[/tex] = 0
Therefore;
[tex]I_{CM} = \dfrac{1}{2} \cdot m_{bar} \times 0^2 + 2 \times \dfrac{2}{5} \cdot m_{ball} \times 0^2 = 0 + 0[/tex]
The moment of inertia through both balls and parallel to the bar = 0
(d) By parallel axis theorem, we have;
[tex]I_{CM + d}[/tex] = [tex]I_{CM}[/tex] + [tex]m_{bar}[/tex]·d² + [tex]m_{ball}[/tex]·d² + [tex]m_{ball}[/tex]·d²
∴ [tex]I_{CM + d}[/tex] = 0 + 4×0.5² + 0.3×0.5² + 0.3×0.5² = 1.15
[tex]I_{CM + d}[/tex] = 1.15 kg·m²
Learn more here:
https://brainly.com/question/14119750
https://brainly.com/question/14048272
Otras preguntas
