Respuesta :

Answer:

The values of x are -3 and 5

Step-by-step explanation:

we have

[tex]x-\frac{15}{x}=2[/tex]

Multiply by x both sides to remove the fraction

[tex]x^{2} -15=2x\\\\x^{2} -2x-15=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2} -2x-15=0[/tex]

so

[tex]a=1\\b=-2\\c=-15[/tex]

substitute in the formula

[tex]x=\frac{-(-2)(+/-)\sqrt{-2^{2}-4(1)(-15)}} {2(1)}[/tex]

[tex]x=\frac{2(+/-)\sqrt{64}} {2}[/tex]

[tex]x=\frac{2(+/-)8} {2}[/tex]

[tex]x_1=\frac{2(+)8} {2}=5[/tex]

[tex]x_2=\frac{2(-)8} {2}=-3[/tex]

therefore

The values of x are -3 and 5

Answer:

E.

-3, 5

Step-by-step explanation:

ACCESS MORE
EDU ACCESS
Universidad de Mexico