Answer: a. [tex]5.2069<\sigma^2<18.7689[/tex]
b. [tex]2.2819<\sigma<4.3323[/tex]
Step-by-step explanation:
The confidence interval for population variance is given by :-
[tex]\dfrac{s^2(n-1)}{\chi^2_{\alpha/2}}<\sigma^2<\dfrac{s^2(n-1)}{\chi^2_{1-\alpha/2}}[/tex]
, where n= sample size
s = sample standard deviation.
As per given , we have
n= 14
s=$3.08
For 90% confidence , the significance level = [tex]\alpha=1-0.90=0.10[/tex]
Critical values using chi-square distribution table ,
[tex]\chi^2_{\alpha/2, n-1}=\chi^2_{0.05,13}=23.6845\\\\\chi^2_{1-\alpha/2, n-1}=\chi^2_{0.95,13}=6.5706[/tex]
Now, the required confidence interval for population variance :
[tex]\dfrac{(3.08)^2(14-1)}{23.6845}<\sigma^2<\dfrac{(3.08)^2(14-1)}{6.5706}\\\\=5.20691591547\sigma^2<18.7689404316\\\\\approx5.2069<\sigma^2<18.7689[/tex]
i.e. 90% confidence intervals for the population variance:[tex]5.2069<\sigma^2<18.7689[/tex]
Then, 90% confidence intervals for population standard deviation :
[tex]\sqrt{5.2069}<\sigma<\sqrt{18.7689}[/tex]
[tex]\approx2.2819<\sigma<4.3323[/tex]