Answer:
[tex]59.19 ft^2[/tex]
Step-by-step explanation:
step 1
Find the area of the circle
The area of the circle is equal to
[tex]A=\pi r^{2}[/tex]
we have
[tex]r=7.2\ ft[/tex]
[tex]\pi =3.14[/tex]
substitute
[tex]A=(3.14)(7.2)^{2}[/tex]
[tex]A=162.78\ ft^2[/tex]
step 2
we know that
The area of a circle subtends a central angle of 2π radians
so
using proportion
Find out the area of a sector with a central angle of 8 π/11 radians
[tex]\frac{162.78}{2\pi }\frac{ft^2}{rad} =\frac{x}{(8\pi/11)}\frac{ft^2}{rad} \\\\x=162.78(8/11)/2\\\\x=59.19\ ft^2[/tex]