Respuesta :
Answer:
[tex]\frac{7\sqrt{15}}{4}\text{ meter per sec}[/tex]
Step-by-step explanation:
Let B represents the position of runner, A represents the position of the friend and C represents the position of centre of the circular track. ( shown below ),
We need to find : [tex]\frac{dc}{dt}[/tex]
By the cosine law,
[tex]c^2 = a^2 + b^2 - 2ab \cos C[/tex]
Differentiating with respect to t ( time ),
[tex]2c\frac{dc}{dt} = 2ab \sin C \frac{dC}{dt}[/tex]
[tex]\implies \frac{dc}{dt}=\frac{ab \sin C\frac{dC}{dt}}{c}-----(1)[/tex]
Now, by arc length formula,
Radius( say r ) × angle = arc length ( say l )
[tex]r\times \angle C = l[/tex]
Differentiating w. r. t. t,
[tex]r\times \frac{dC}{dt}+\angle C\times \frac{dr}{dt}= \frac{dl}{dt}[/tex]
Here, [tex]\frac{dl}{dt}=7\text{ m per sec}, \frac{dr}{dt}=0, r = 100[/tex]
[tex]\implies \frac{dC}{dt}=\frac{7}{100}----(2)[/tex],
Now, again [tex]c^2 = a^2 + b^2 - 2ab \cos C[/tex]
[tex]200^2 = 100^2 + 200^2 - 2(100)(200)\cos C[/tex]
[tex]40000 = 10000 + 40000 - 40000\cos C[/tex]
[tex]-10000 = -40000\cos C[/tex]
[tex]\implies \cos C =\frac{1}{4}[/tex]
We know that,
[tex]\sin C = \sqrt{1-\cos^2 C}=\sqrt{1-\frac{1}{16}}=\sqrt{\frac{16-1}{16}}=\frac{\sqrt{15}}{4}---(3)[/tex]
From equation (1), (2) and (3),
[tex]\frac{dc}{dt}=\frac{(100)(200)\frac{\sqrt{15}}{4}\frac{7}{100}}{200}=\frac{7\sqrt{15}}{4}\text{ meter per sec}[/tex]
Hence, the distance between the friends changing with the rate of [tex]\frac{7\sqrt{15}}{4}[/tex] meter per sec.
