Respuesta :
Answers:
a) [tex]W_{g}=mgh[/tex]
b) [tex]\Delta K=mgh[/tex]
c) [tex]K_{f}=\frac{1}{2}mV_{o}^{2}+mgh[/tex]
d) No
Explanation:
We have the following data:
[tex]m[/tex] is the mass of the projectile
[tex]V_{o}[/tex] is the initial speed of the projectile
[tex]h[/tex] is the height at which the projectile was fired
[tex]\theta=0\°[/tex] is the angle (it was fired horizontally)
[tex]g[/tex] is the acceleration due gravity
a) The Work when the applied force and the distance (height [tex]h[/tex]) are parallel is:
[tex]W_{g}=F_{g} hcos \theta[/tex] (1)
Where [tex]F_{g}=mg[/tex] is the force exerted by gravity on the projetile (its weight)
So:
[tex]W_{g}=mg h cos (0\°)[/tex] (2)
[tex]W_{g}=mgh[/tex] (3) This is the work done by gravity
b) According to Conservation of energy principle the initial total mechanical energy [tex]E_{o}[/tex] is equal to the final mechanical energy [tex]E_{f}[/tex]:
[tex]E_{o}=E_{f}[/tex] (4)
Where:
[tex]E_{o}=K_{o}+U_{o}[/tex] (5)
Being [tex]K_{o}=\frac{1}{2}mV_{o}^{2}[/tex] the initial kinetic energy and [tex]U_{o}=mgh[/tex] the initial gravitational potential energy
[tex]E_{f}=K_{f}+U_{f}[/tex] (6)
Being [tex]K_{f}=\frac{1}{2}mV_{f}^{2}[/tex] the final kinetic energy and [tex]U_{f}=mg(0)[/tex] the final gravitational potential energy
So: [tex]K_{o}+U_{o}=K_{f}+U_{f}[/tex] (7)
[tex]K_{f}-K_{o}=U_{o}-U_{f}[/tex] (8)
Where [tex]\Delta K=K_{f}-K_{o}[/tex] is the change in kinetic energy.
Hence:
[tex]\Delta K=U_{o}-U_{f}[/tex]
[tex]\Delta K=mgh-mg(0)[/tex]
[tex]\Delta K=mgh[/tex] (9) This is the change in kinetic energy
c) Isolating [tex]K_{f}[/tex] from (8):
[tex]K_{f}=U_{o}-U_{f}+K_{o}[/tex] (10)
[tex]K_{f}=mgh-mg(0)+\frac{1}{2}mV_{o}^{2}[/tex]
Hence:
[tex]K_{f}=mgh+\frac{1}{2}mV_{o}^{2}[/tex] (11) This is the final kinetic energy of the projectile
d)These results will not change if we change the angle, since these equations do not depend on the angle.