Respuesta :
Answer:
[tex]\text { The standard change in enthalpy for this reaction is } \Delta \mathrm{H}=2.397 \times 10^{4} \mathrm{J} / \mathrm{mol}[/tex]
Explanation:
Let’s assume[tex]\text { At } 300 \mathrm{K}, \mathrm{k}_{\mathrm{eq}}=\mathrm{x}[/tex]
Thus as per given information
[tex]\text { At } 350 \mathrm{K}, \mathrm{k}_{\mathrm{eq}}=3.95 \mathrm{x}[/tex]
As we know:
[tex]\ln \left(\frac{k_{2}}{k_{1}}\right)=-\frac{\Delta \mathrm{H}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)[/tex]
[tex]\ln \left(\frac{3.95 x}{x}\right)=\frac{-\Delta \mathrm{H}}{8.314 \mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1}}[/tex]
[tex]8.314 \mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1} \times \ln 3.95=-\Delta \mathrm{H} \times\left(-4.761 \times 10^{-4} \mathrm{K}^{-1}\right)[/tex]
[tex]\Delta \mathrm{H}=\frac{8.314 \mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1} \times 1.373}{-4.761 \times 10^{-4} \mathrm{K}^{-1}}[/tex]
[tex]\Delta \mathrm{H}=2.397 \times 10^{4} \mathrm{J} / \mathrm{mol}[/tex]
The standard change in enthalpy for this reaction is mathematically given as
dH=2.397 *10^{4} J/mol
What is the standard change in enthalpy for this reaction?
Question Parameter(s):
The equilibrium constant for a certain reaction increases by a factor of 3.95 when the temperature is increased from 300.0 K to 350.0 K.
Generally, the equation for the change in enthalpy is mathematically given as
[tex]\ln \ (\frac{k_{2}}{k_{1}})=-\frac{\Delta \mathrm{H}}{R} (\frac{1}{T_{2}}-\frac{1}{T_{1}})[/tex]
Therefore
[tex]8.314 {J} {mol}^{-1} {K}^{-1} *\ln 3.95=-d{H} *(-4.761 \times 10^{-4} {K}^{-1})[/tex]
dH=2.397 *10^{4} J/mol
In conclusion
dH=2.397 *10^{4} J/mol
Read more about Heat
https://brainly.com/question/13439286