Answer:
[tex]\vec u+m\vec v=<8,14>[/tex]
Step-by-step explanation:
Being [tex]\vec u[/tex]=<3,4> and [tex]\vec v[/tex]=<1,2>, we must find
[tex]\vec u+m\vec v[/tex]
If m is the magintude of [tex]\vec u[/tex]:
[tex]m=\sqrt{a^{2}+b^{2}}[/tex]
Where a and b are the components of [tex]\vec u[/tex]
[tex]m=\sqrt{3^{2}+4^{2}}=5[/tex]
[tex]\vec u+5\vec v=<3,4>+5<1,2>=<3,4>+<5,10>=<8,14>[/tex]