Respuesta :

Answer:

The Secant of angle A is 1.083    and

The Secant of angle B is 2.6

Step-by-step explanation:

Given as : The figure is shown as right angle triangle, right angle at c

the measure sides as

Hypotenuse = AB = 26  unit

Base = AC = 24 unit    and

Perpendicular = BC = 10  unit

Now, ∵ Sec Ф = [tex]\frac{\textrm Hypotenuse}{\textrm Base}[/tex]

So, From triangle

      Sec A =  [tex]\frac{\textrm Hypotenuse}{\textrm Base}[/tex]

Or,  Sec A =  [tex]\frac{\textrm AB}{\textrm AC}[/tex]

Or,  Sec A =  [tex]\frac{\textrm 26}{\textrm 24}[/tex]

∴     Sec A = 1.083

Again ,

       Sec B =  [tex]\frac{\textrm Hypotenuse}{\textrm Base}[/tex]

Or,   Sec B =  [tex]\frac{\textrm AB}{\textrm BC}[/tex]

Or,   Sec B =  [tex]\frac{\textrm 26}{\textrm 10}[/tex]

∴      Sec B = 2.6

Hence The Secant of angle A is 1.083    and

           The Secant of angle b is 2.6  Answer

Answer:

[tex]\displaystyle 2\frac{3}{5} = sec∠B \\ 1\frac{1}{12} = sec∠A[/tex]

Step-by-step explanation:

[tex]\displaystyle \frac{OPPOSITE}{HYPOTENUSE} = sin\:θ \\ \frac{ADJACENT}{HYPOTENUSE} = cos\:θ \\ \frac{OPPOSITE}{ADJACENT} = tan\:θ \\ \frac{HYPOTENUSE}{ADJACENT} = sec\:θ \\ \frac{HYPOTENUSE}{OPPOSITE} = csc\:θ \\ \frac{ADJACENT}{OPPOSITE} = cot\:θ \\ \\ \frac{26}{10} = sec∠B → 2\frac{3}{5} = sec∠B \\ \\ \frac{26}{24} = sec∠A → 1\frac{1}{12} = sec∠A[/tex]

I am joyous to assist you anytime.

ACCESS MORE
EDU ACCESS
Universidad de Mexico