Find the secant of both angle A and angle B.

Answer:
The Secant of angle A is 1.083 and
The Secant of angle B is 2.6
Step-by-step explanation:
Given as : The figure is shown as right angle triangle, right angle at c
the measure sides as
Hypotenuse = AB = 26 unit
Base = AC = 24 unit and
Perpendicular = BC = 10 unit
Now, ∵ Sec Ф = [tex]\frac{\textrm Hypotenuse}{\textrm Base}[/tex]
So, From triangle
Sec A = [tex]\frac{\textrm Hypotenuse}{\textrm Base}[/tex]
Or, Sec A = [tex]\frac{\textrm AB}{\textrm AC}[/tex]
Or, Sec A = [tex]\frac{\textrm 26}{\textrm 24}[/tex]
∴ Sec A = 1.083
Again ,
Sec B = [tex]\frac{\textrm Hypotenuse}{\textrm Base}[/tex]
Or, Sec B = [tex]\frac{\textrm AB}{\textrm BC}[/tex]
Or, Sec B = [tex]\frac{\textrm 26}{\textrm 10}[/tex]
∴ Sec B = 2.6
Hence The Secant of angle A is 1.083 and
The Secant of angle b is 2.6 Answer
Answer:
[tex]\displaystyle 2\frac{3}{5} = sec∠B \\ 1\frac{1}{12} = sec∠A[/tex]
Step-by-step explanation:
[tex]\displaystyle \frac{OPPOSITE}{HYPOTENUSE} = sin\:θ \\ \frac{ADJACENT}{HYPOTENUSE} = cos\:θ \\ \frac{OPPOSITE}{ADJACENT} = tan\:θ \\ \frac{HYPOTENUSE}{ADJACENT} = sec\:θ \\ \frac{HYPOTENUSE}{OPPOSITE} = csc\:θ \\ \frac{ADJACENT}{OPPOSITE} = cot\:θ \\ \\ \frac{26}{10} = sec∠B → 2\frac{3}{5} = sec∠B \\ \\ \frac{26}{24} = sec∠A → 1\frac{1}{12} = sec∠A[/tex]
I am joyous to assist you anytime.