Respuesta :
Answer:
The power input is 0.102 kW
Solution:
As per the question:
Length of the loop, L = 40 m
Diameter of the loop, d = 1.2 cm
Velocity, v = 2 m/s
Loss coefficient of the threaded bends, [tex]K_{L, bend} = 0.9[/tex]
Loss coefficient of the valve, [tex]K_{L, valve} = 0.2[/tex]
Dynamic viscosity of water, [tex]\mu = 0.467\times 10^{- 3}\ kg/m.s[/tex]
Density of water, [tex]\rho = 983.3\ kg/m^{3}[/tex]
Roughness of the pipe of cast iron, [tex]\epsilon = 0.00026\ m[/tex]
Efficiency of the pump, [tex]\eta = 0.76[/tex]
Now,
We calculate the volume flow rate as:
[tex]\dot{V} = Av[/tex]
where
[tex]\dot{V}[/tex] = Volume rate flow
A = Area
v = velocity
[tex]\dot{V} = \frac{\pi}{4}d^{2}\times 2 = 2.262\times 10^{- 4}\ m^{3}/s[/tex]
For this, Reynold's N. is given by:
[tex]R_{e} = \frac{\rho vd}{\mu}[/tex]
[tex]R_{e} = \frac{983.3\times 2\times 0.012}{0.467\times 10^{- 3}} = 50533.62[/tex]
Since, [tex]R_{e}[/tex] > 4000, the flow is turbulent in nature.
Now,
With the help of the Colebrook eqn, we calculate the friction factor as:
[tex]\frac{1}{\sqrt{f}} = - 2log[\frac{\frac{\epsilon}{d}}{3.7} + \frac{2.51}{R_{e}\sqrt{f}}][/tex]
[tex]\frac{1}{\sqrt{f}} = - 2log[\frac{\frac{0.00026}{0.012}}{3.7} + \frac{2.51}{50533.62\sqrt{f}}][/tex]
f = 0.05075
Now,
To calculate the total head loss:
[tex]H_{loss} = (\frac{fL}{d} + 6K_{L, bend} + 2K_{L, valve})\farc{v^{2}}{2g}[/tex]
[tex]H_{loss} = (\frac{0.05075\times 40}{0.012} + 6\times 0.9 + 2\times 0.2)\farc{2^{2}}{2\times 9.8} = 35.71\ m[/tex]
Now,
The drop in the pressure can be calculated as:
[tex]\Delat P = \rho g H_{loss}[/tex]
[tex]\Delat P = 983.3\times 9.8\times 35.71 = 344.113\ kN/m^{2}[/tex]
Now,
to calculate the input power:
[tex]\dot{W} = \frac{\dot{W_{p}}}{\eta}[/tex]
[tex]\dot{W} = \frac{\dot{V}\Delta P}{0.76}[/tex]
[tex]\dot{W} = \frac{2.262\times 10^{- 4}\times 344.113\times 1000}{0.76} = 0.102\ kW[/tex]