Respuesta :
Answer : The correct option is, (d) [tex]5.0\times 10^{-12}mole[/tex]
Explanation :
First we have to calculate the [tex]H^+[/tex] concentration.
[tex]pH=-\log [H^+][/tex]
[tex]11.5=-\log [H^+][/tex]
[tex][H^+]=3.16\times 10^{-12}M[/tex]
Now we have to calculate the [tex]OH^-[/tex] concentration.
[tex][H^+][OH^-]=K_w[/tex]
[tex]3.16\times 10^{-12}\times [OH^-]=1.0\times 10^{-14}[/tex]
[tex][OH^-]=3.16\times 10^{-3}M[/tex]
Now we have to calculate the molar solubility of [tex]Zn(OH)_2[/tex].
The balanced equilibrium reaction will be:
[tex]Zn(OH)_2\rightleftharpoons Zn^{2+}+2OH^-[/tex]
The expression for solubility constant for this reaction will be,
[tex]K_{sp}=[Zn^{2+}][OH^-]^2[/tex]
Now put all the given values in this expression, we get:
[tex]5.0\times 10^{-17}=[Zn^{2+}]\times (3.16\times 10^{-3})^2[/tex]
[tex][Zn^{2+}]=5.0\times 10^{-12}M[/tex]
Therefore, the molar solubility of [tex]Zn(OH)_2[/tex] is, [tex]5.0\times 10^{-12}mole[/tex]