Respuesta :
Answer:
(a) Hypotheses relevant to the research question are
[tex]H_{0}: \mu_{1}-\mu_{2} = 0[/tex] vs [tex]H_{1}: \mu_{1}-\mu_{2} < 0[/tex] (lower-tail alternative) and
[tex]H_{0}: \mu_{1}-\mu_{2} = 0[/tex] vs [tex]H_{1}: \mu_{1}-\mu_{2} > 0[/tex] (upper-tail alternative).
(b) There is no evidence that one mathematic learning technique is better than the other.
Step-by-step explanation:
Let's suppose that the data related to Technique A comes from population 1 and that the data related to Technique B comes from population 2. We have large sample sizes [tex]n_{1} = 90[/tex] and [tex]n_{2} = 110[/tex]. The unbiased point estimate for [tex]\mu_{1}-\mu_{2}[/tex] is [tex]\bar{x}_{1} - \bar{x}_{2}[/tex], i.e., 26.1 - 27.9 = -1.8. The standard error is given by [tex]\sqrt{\frac{\sigma^{2}_{1}}{n_{1}}+\frac{\sigma^{2}_{2}}{n_{2}}}\approx[/tex] [tex]\sqrt{\frac{(7.2)^{2}}{90}+\frac{(12.4)^{2}}{110}}[/tex] = 1.4049.
(a) Hypotheses relevant to the research question are
[tex]H_{0}: \mu_{1}-\mu_{2} = 0[/tex] vs [tex]H_{1}: \mu_{1}-\mu_{2} < 0[/tex] (lower-tail alternative) and
[tex]H_{0}: \mu_{1}-\mu_{2} = 0[/tex] vs [tex]H_{1}: \mu_{1}-\mu_{2} > 0[/tex] (upper-tail alternative).
(b) The test statistic is [tex]Z = \frac{\bar{x}_{1} - \bar{x}_{2}-0}{\sqrt{\frac{\sigma^{2}_{1}}{n_{1}}+\frac{\sigma^{2}_{2}}{n_{2}}}}[/tex] and the observed value is [tex]z_{0} = \frac{-1.8}{1.4049} = -1.2812[/tex].
The p-value for the lower-tail alternative is P(Z < -1.2812) = 0.1000617 and the p-value for the upper-tail alternative is P(Z > -1.2812) = 0.8999. The p-value is greater than 0.10 in both cases, therefore, we fail to reject the null hypotheses in both cases.