Answer:
a)[tex]v=\dfrac{2.KE}{qBR}[/tex]
b)[tex]m=\dfrac{(qBR)^2}{2.KE}[/tex]
Explanation:
Given that
Charge = q
Magnetic filed = B
Radius = R
We know that kinetic energy KE
[tex]KE=\dfrac{1}{2}mv^2[/tex] ----------1
m v² = 2 .KE
The magnetic force F = q v B
Radial force
[tex]Fr=\dfrac{1}{R}mv^2[/tex]
For uniform force these two forces should be equal
[tex]q v B=\dfrac{1}{r}mv^2[/tex]
q v B R =m v²
q v B R = 2 .KE
[tex]v=\dfrac{2.KE}{qBR}[/tex]
Now put the velocity v in the equation
[tex]KE=\dfrac{1}{2}mv^2[/tex]
[tex]m=\dfrac{2 .KE}{v^2}[/tex]
[tex]m=\dfrac{2.KE}{\left(\dfrac{2.KE}{qBR}\right)^2}[/tex]
[tex]m=\dfrac{(qBR)^2}{2.KE}[/tex]