A particle with charge q and kinetic energy KE travels in a uniform magnetic field of magnitude B. If the particle moves in a circular path of radius R, find expressions for its speed v and its mass m. (Use any variable or symbol stated above as necessary.) (a) expression for its speed (Do not use m in your answer.) v = (b) expression for its mass (Do not use v in your answer.) m =

Respuesta :

Answer:

a)[tex]v=\dfrac{2.KE}{qBR}[/tex]

b)[tex]m=\dfrac{(qBR)^2}{2.KE}[/tex]

Explanation:

Given that

Charge = q

Magnetic filed = B

Radius = R

We know that kinetic energy KE

[tex]KE=\dfrac{1}{2}mv^2[/tex]                    ----------1

m v² = 2 .KE            

The magnetic force F = q v B

Radial force

[tex]Fr=\dfrac{1}{R}mv^2[/tex]

For uniform force these two forces should be equal

[tex]q v B=\dfrac{1}{r}mv^2[/tex]

q v B R =m v²

q v B R =  2 .KE

[tex]v=\dfrac{2.KE}{qBR}[/tex]

Now put the velocity v in the equation

[tex]KE=\dfrac{1}{2}mv^2[/tex]

[tex]m=\dfrac{2 .KE}{v^2}[/tex]

[tex]m=\dfrac{2.KE}{\left(\dfrac{2.KE}{qBR}\right)^2}[/tex]

[tex]m=\dfrac{(qBR)^2}{2.KE}[/tex]

RELAXING NOICE
Relax