Respuesta :

Answer:

13. [tex]x=1,-7[/tex]

14. [tex]x=-3+\sqrt{14}[/tex] and [tex]x=-3-\sqrt{14}[/tex]

Step-by-step explanation:

to solve the quadratic equation([tex]ax^{2} +bx+c=0[/tex]) using completing the squares method:

Step1: divide the equation by a to make it in the form [tex]x^{2} +\frac{b}{a}x+\frac{c}{a} =0[/tex]

Step2: add [tex](\frac{b}{2a})^{2}[/tex] on both sides of the equation to get the eqaution:

[tex]x^{2} +\frac{b}{a}x+(\frac{b}{2a})^{2} +\frac{c}{a}=(\frac{b}{2a})^{2}[/tex]

Step3: rearrange them to get the square.

⇒[tex](x+\frac{b}{2a} )^{2}=(\frac{b}{2a})^{2}-\frac{c}{a}[/tex]

⇒[tex]x= -\frac{b}{2a}+\sqrt{(\frac{b}{2a})^{2}-\frac{c}{a}}[/tex] and

[tex]x= \frac{b}{2a}+\sqrt{(\frac{b}{2a})^{2}-\frac{c}{a}}[/tex]

Now getting on to the question:

13. [tex]x^{2} +6x=7[/tex]

a=1; b=6; c=-7

adding [tex]\frac{b}{2a}^{2} = \frac{6}{2*1}^{2} =3^{2} =9[/tex] on both sides

⇒[tex]x^{2} +6x+9=7+9[/tex]

⇒[tex]x^{2} +6x+9=16[/tex]

⇒[tex](x+3)^{2}=16[/tex]

⇒[tex]x+3=\sqrt{16}[/tex]

⇒[tex]x+3=4[/tex] and [tex]x+3=-4[/tex]

⇒[tex]x=1,-7[/tex]

14. [tex]x^{2} +6x=5[/tex]

a=1; b=6; c=-5

adding  [tex]\frac{b}{2a}^{2} = \frac{6}{2*1}^{2} =3^{2} =9[/tex]on both sides

⇒[tex]x^{2} +6x+9=5+9[/tex]

⇒[tex]x^{2} +6x+9=14[/tex]

⇒[tex](x+3)^{2}=14[/tex]

⇒[tex]x+3=\sqrt{14}[/tex]

⇒[tex]x+3=\sqrt{14}[/tex] and [tex]x+3=-\sqrt{14}[/tex]

⇒[tex]x=-3+\sqrt{14}[/tex] and [tex]x=-3-\sqrt{14}[/tex]

RELAXING NOICE
Relax