Respuesta :
a) The acceleration of gravity is [tex]4.96 m/s^2[/tex]
b) The critical velocity is 6668 m/s (24,006 km/h)
c) The period of the orbit is 8452 s
d) The satellite completes 10.2 orbits per day
e) The escape velocity of the satellite is 9430 m/s
f) The escape velocity of the rocket is 11,191 m/s
Explanation:
a)
The acceleration of gravity for an object near a planet is given by
[tex]g=\frac{GM}{(R+h)^2}[/tex]
where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
h is the height above the surface
In this problem,
[tex]M=5.98\cdot 10^{24} kg[/tex] (mass of the Earth)
[tex]R=6.37\cdot 10^6 m[/tex] (Earth's radius)
[tex]h=2.60\cdot 10^6 m[/tex] (altitude of the satellite)
Substituting,
[tex]g=\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)^2}=4.96 m/s^2[/tex]
b)
The critical velocity for a satellite orbiting around a planet is given by
[tex]v=\sqrt{\frac{GM}{R+h}}[/tex]
where we have again:
[tex]M=5.98\cdot 10^{24} kg[/tex] (mass of the Earth)
[tex]R=6.37\cdot 10^6 m[/tex] (Earth's radius)
[tex]h=2.60\cdot 10^6 m[/tex] (altitude of the satellite)
Substituting,
[tex]v=\sqrt{\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=6668 m/s[/tex]
Converting into km/h,
[tex]v=6668 m/s \cdot \frac{3600 s/h}{1000 m/km}=24,006 km/h[/tex]
c)
The period of the orbit is given by the circumference of the orbit divided by the velocity:
[tex]T=\frac{2\pi (R+h)}{v}[/tex]
where
[tex]R=6.37\cdot 10^6 m[/tex]
[tex]h=2.60\cdot 10^6 m[/tex]
v = 6668 m/s
Substituting,
[tex]T=\frac{2\pi (6.37\cdot 10^6 + 2.60\cdot 10^6)}{6668}=8452 s[/tex]
d)
One day consists of:
[tex]t = 24 \frac{hours}{day} \cdot 60 \frac{min}{hours} \cdot 60 \frac{s}{min}=86400 s[/tex]
While the period of the orbit is
T = 8452 s
So, the number of orbits completed by the satellite in one day is
[tex]n=\frac{t}{T}=\frac{86400}{8452}=10.2[/tex]
e)
The escape velocity for an object in the gravitational field of a planet is given by
[tex]v=\sqrt{\frac{2GM}{R+h}}[/tex]
where here we have:
[tex]M=5.98\cdot 10^{24} kg[/tex]
[tex]R=6.37\cdot 10^6 m[/tex]
[tex]h=2.60\cdot 10^6 m[/tex]
Substituting, we find
[tex]v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=9430 m/s[/tex]
f)
We can apply again the formula to find the escape velocity for the rocket:
[tex]v=\sqrt{\frac{2GM}{R+h}}[/tex]
Where this time we have:
[tex]M=5.98\cdot 10^{24} kg[/tex]
[tex]R=6.37\cdot 10^6 m[/tex]
[tex]h=0[/tex], because the rocket is located at the Earth's surface, so its altitude is zero.
And substituting,
[tex]v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6)}}=11,191 m/s[/tex]
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly