Answer: 37.8 grams
Explanation:-
[tex]heat_{absorbed}=heat_{released}[/tex]
As we know that
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
[tex]m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)][/tex] .................(1)
where,
q = heat absorbed or released
[tex]m_1[/tex] = mass of iron rod = 32.4 g
[tex]m_2[/tex] = mass of water = ?
[tex]T_{final}[/tex] = final temperature = [tex]59.6^oC=332.6K[/tex]
[tex]T_1[/tex] = temperature of iron rod = [tex]21.6^oC=294.6K[/tex]
[tex]T_2[/tex] = temperature of water = [tex]63.1^oC=336.1K[/tex]
[tex]c_1[/tex] = specific heat of iron rod = [tex]0.450J/g^0C[/tex]
[tex]c_2[/tex] = specific heat of water= [tex]4.18J/g^0C[/tex]
Now put all the given values in equation (1), we get
[tex]32.4\times 0.450\times (332.6-294.6)=-[m_2\times 4.18\times (332.6-336.1)][/tex]
[tex]m_2=37.8g[/tex]
Therefore, the mass of the water is 37.8 grams