A 32.4 g iron rod, initially at 21.6 ∘C, is submerged into an unknown mass of water at 63.1 ∘C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 59.6 ∘C. You may want tWhat is the mass of the water?

Respuesta :

Answer:  37.8 grams

Explanation:-

[tex]heat_{absorbed}=heat_{released}[/tex]

As we know that

[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]

[tex]m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)][/tex]         .................(1)

where,

q = heat absorbed or released

[tex]m_1[/tex] = mass of iron rod = 32.4 g

[tex]m_2[/tex] = mass of water = ?

[tex]T_{final}[/tex] = final temperature =  [tex]59.6^oC=332.6K[/tex]

[tex]T_1[/tex] = temperature of iron rod = [tex]21.6^oC=294.6K[/tex]

[tex]T_2[/tex] = temperature of water = [tex]63.1^oC=336.1K[/tex]

[tex]c_1[/tex] = specific heat of iron rod = [tex]0.450J/g^0C[/tex]

[tex]c_2[/tex] = specific heat of water= [tex]4.18J/g^0C[/tex]

Now put all the given values in equation (1), we get

[tex]32.4\times 0.450\times (332.6-294.6)=-[m_2\times 4.18\times (332.6-336.1)][/tex]

[tex]m_2=37.8g[/tex]

Therefore, the mass of the water is 37.8 grams

RELAXING NOICE
Relax