Answer: [tex]1.955(10)^{13} \frac{Pa.s}{m^{3}}[/tex]
Explanation:
This can be solved by the Poiseuille’s law for a laminar flow:
[tex]R=\frac{8 \eta L}{\pi r^{4}}[/tex]
Where:
[tex]R[/tex] is the resistance of the arteriole
[tex]\eta=3(10)^{-3} Pa.s[/tex] is the viscosity of blood
[tex]L=1000 \mu m=1000(10)^{-6}m[/tex] is the length of the arteriole
[tex]r=25 \mu m=25(10)^{-6}m[/tex] is the radius of the arteriole
[tex]R=\frac{8 (3(10)^{-3} Pa.s)(1000(10)^{-6}m)}{\pi (25(10)^{-6}m)^{4}}[/tex]
[tex]R=1.955(10)^{13} \frac{Pa.s}{m^{3}}[/tex]