Answer: A. (8.4,12.6)
Step-by-step explanation:
Confidence interval[tex](\mu)[/tex] is given by :-
[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]
, where n is the sample size
[tex]\sigma[/tex] = Population standard deviation.
[tex]\overline{x}[/tex]= Sample mean
[tex]z_{\alpha/2}[/tex] = Two tailed z-value for significance level of [tex]\alpha[/tex].
Given : Confidence level = 99% = 0.99
Significance level = [tex]\alpha=1-0.99=0.01[/tex]
By standard normal z-value table ,
Two tailed z-value for Significance level of 0.01 :
[tex]z_{\alpha/2}=z_{0.005}=2.576[/tex]
Also,
n=100
[tex]\sigma= 8[/tex]
[tex]\overline{x}=10.5[/tex]
Then, the required 99% confidence interval for the average number [tex](\mu)[/tex] of chips per cookie :-
[tex]10.5\pm (2.576)\dfrac{8}{\sqrt{100}}\\\\ =10.5\pm 2.0608\\\\=(10.5-2.0608,\ 10.5+2.0608)=(8.4392,\ 12.5608)\approx(8.4,\ 12.6)[/tex]
Hence, the 99% confidence interval for the average number of chips per cookie = (8.4,12.6)