A student wanted to estimate the number of chocolate chips in a commercial brand of cookie. He sampled 100 cookies and found an average of 10.5 chips per cookie. If we assume the standard deviation is 8, what is a 99% confidence interval for the average number of chips per cookie?
A. (8.4,12.6)
B. (8.9,12.1)
C. (5.3,10.7)

Respuesta :

Answer: A. (8.4,12.6)

Step-by-step explanation:

Confidence interval[tex](\mu)[/tex] is given by :-

[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]

, where n is the sample size

[tex]\sigma[/tex] = Population standard deviation.

[tex]\overline{x}[/tex]= Sample mean

[tex]z_{\alpha/2}[/tex] = Two tailed z-value for significance level of [tex]\alpha[/tex].

Given : Confidence level = 99% = 0.99

Significance level = [tex]\alpha=1-0.99=0.01[/tex]

By standard normal z-value table ,

Two tailed z-value for Significance level of 0.01 :

[tex]z_{\alpha/2}=z_{0.005}=2.576[/tex]

Also,

n=100

[tex]\sigma= 8[/tex]

[tex]\overline{x}=10.5[/tex]

Then, the required 99% confidence interval for the average number [tex](\mu)[/tex] of chips per cookie :-

[tex]10.5\pm (2.576)\dfrac{8}{\sqrt{100}}\\\\ =10.5\pm 2.0608\\\\=(10.5-2.0608,\ 10.5+2.0608)=(8.4392,\ 12.5608)\approx(8.4,\ 12.6)[/tex]

Hence, the 99% confidence interval for the average number of chips per cookie = (8.4,12.6)

ACCESS MORE
EDU ACCESS