Answer:
36 feet
Step-by-step explanation:
The given equation is:
[tex]y = - 16 {x}^{2} + 32x + 20[/tex]
To find the maximum height, we complete the square to write the function in the vertex form:
[tex]y = - 16({x}^{2} - 2x) + 20[/tex]
[tex]y= - 16({x}^{2} - 2x) + 20[/tex]
[tex]y= - 16({x}^{2} - 2x + {( - 1)}^{2} - {( - 1)}^{2} ) + 20[/tex]
[tex]y = - 16(x - 1)^{2} + 16 + 20[/tex]
[tex]y = - 16(x - 1)^{2} + 36[/tex]
This equation is of the form:
[tex]y = a {(x - h)}^{2} + k[/tex]
where k=36 is the maximum height reached by the projectile.