A 4.2-m-diameter merry-go-round is rotating freely with an angular velocity of 0.79 rad/s . Its total moment of inertia is 1790 kg⋅m2 . Four people standing on the ground, each of mass 70 kg , suddenly step onto the edge of the merry-go-round.

Respuesta :

Answer:

[tex]w_2=0.467rad/s[/tex]

Explanation:

Four people standing on the ground each of mass and usually this questions have to find the final angular velocity

[tex]m_t=4*70kg=280kg[/tex]

The radius [tex]r=4.2/2=2.1m[/tex]

Angular velocity  [tex]w_1=0.79rad/s[/tex]

The moment of inertia total is [tex]I_t=1790 kg/m^2[/tex]

Momento if inertia

[tex]I_1=m_t*r^2[/tex]

[tex]I_1=280kg*(2.1m)^2=1234.8kg*m^2[/tex]

Angular momentum

[tex]I_1*w_1=I_t*w_2[/tex]

Solve to w2

[tex]w_2=\frac{I_1*w_1}{I_t}[/tex]

[tex]w_2=\frac{1790kg*m^2*0.79rad/s}{3024.8kg*m^2}[/tex]

[tex]w_2=0.467rad/s[/tex]

ACCESS MORE