Answer:
critical stress required for the propagation is 27.396615 ×[tex]10^{6}[/tex] N/m²
Explanation:
given data
specific surface energy = 0.90 J/m²
modulus of elasticity E = 393 GPa = 393 ×[tex]10^{9}[/tex] N/m²
internal crack length = 0.6 mm
to find out
critical stress required for the propagation
solution
we will apply here critical stress formula for propagation of internal crack
( σc ) = [tex]\sqrt{\frac{2E\gamma s}{\pi a}}[/tex] .....................1
here E is modulus of elasticity and γs is specific surface energy and a is half length of crack i.e 0.3 mm = 0.3 ×[tex]10^{-3}[/tex] m
so now put value in equation 1 we get
( σc ) = [tex]\sqrt{\frac{2E\gamma s}{\pi a}}[/tex]
( σc ) = [tex]\sqrt{\frac{2*393*10^9*0.90}{\pi 0.3*10^{-3}}}[/tex]
( σc ) = 27.396615 ×[tex]10^{6}[/tex] N/m²
so critical stress required for the propagation is 27.396615 ×[tex]10^{6}[/tex] N/m²