Answer:
The ball will be at 100 feet at time x=0.5 sec and at time x=7.5 sec
Step-by-step explanation:
The correct question is
A ball is launched upward from a height 40 feet above ground level. the ball's height at t seconds is given by h(t)=-16t^2+128t+40 At what time(s) will the ball be at 100 feet?
we have
[tex]h(t)=-16t^{2}+128t+40[/tex]
so
For h(t)=100 ft
substitute in the equation and solve for x
[tex]-16t^{2}+128t+40=100[/tex]
[tex]-16t^{2}+128t-60=0[/tex]
The formula to solve a quadratic equation of the form
[tex]ax^{2} +bx+c=0[/tex]
is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]-16t^{2}+128t-60=0[/tex]
so
[tex]a=-16\\b=128\\c=-60[/tex]
substitute in the formula
[tex]x=\frac{-128(+/-)\sqrt{128^{2}-4(-16)(-60)}} {2(-16)}[/tex]
[tex]x=\frac{-128(+/-)\sqrt{12,544}} {-32}[/tex]
[tex]x=\frac{-128(+/-)112} {-32}[/tex]
[tex]x=\frac{-128(+)112} {-32}=0.5[/tex]
[tex]x=\frac{-128(-)112} {-32}=7.5[/tex]
therefore
The ball will be at 100 feet at time x=0.5 sec and at time x=7.5 sec