Respuesta :

Answer:

The ball will be at 100 feet at time x=0.5 sec and at time x=7.5 sec

Step-by-step explanation:

The correct question is

A ball is launched upward from a height 40 feet above ground level. the ball's height at t seconds is given by h(t)=-16t^2+128t+40 At what time(s) will the ball be at 100 feet?

we have

[tex]h(t)=-16t^{2}+128t+40[/tex]

so

For h(t)=100 ft

substitute in the equation and solve for x

[tex]-16t^{2}+128t+40=100[/tex]

[tex]-16t^{2}+128t-60=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]-16t^{2}+128t-60=0[/tex]

so

[tex]a=-16\\b=128\\c=-60[/tex]

substitute in the formula

[tex]x=\frac{-128(+/-)\sqrt{128^{2}-4(-16)(-60)}} {2(-16)}[/tex]

[tex]x=\frac{-128(+/-)\sqrt{12,544}} {-32}[/tex]

[tex]x=\frac{-128(+/-)112} {-32}[/tex]

[tex]x=\frac{-128(+)112} {-32}=0.5[/tex]

[tex]x=\frac{-128(-)112} {-32}=7.5[/tex]

therefore

The ball will be at 100 feet at time x=0.5 sec and at time x=7.5 sec

ACCESS MORE