On a coordinate plane, triangle A B C is shown. Point A is at (0, 0), point B is at (3, 4), and point C is at (3, 2). What is the area of triangle ABC?

Respuesta :

Answer:

The area of triangle for the given coordinates is  1.5[tex]\sqrt{4.6}[/tex]

Step-by-step explanation:

Given coordinates of triangles as

A = (0,0)

B = (3,4)

C = (3,2)

So, The measure of length AB = a = [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]

Or, a = [tex]\sqrt{(3-0)^{2}+(4-0)^{2}}[/tex]

Or, a =  [tex]\sqrt{9+16}[/tex]

Or, a =   [tex]\sqrt{25}[/tex]

a = 5 unit

Similarly

The measure of length BC = b = [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]

Or, b = [tex]\sqrt{(3-3)^{2}+(2-4)^{2}}[/tex]

Or, a =  [tex]\sqrt{0+4}[/tex]

Or, b =   [tex]\sqrt{4}[/tex]

b = 2 unit

And

So, The measure of length CA = c = [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]

Or, c = [tex]\sqrt{(3-0)^{2}+(2-0)^{2}}[/tex]

Or, c =  [tex]\sqrt{9+4}[/tex]

Or, c =   [tex]\sqrt{13}[/tex]

c = [tex]\sqrt{13}[/tex] unit

Now, area of Triangle written as , from Heron's formula

A = [tex]\sqrt{s\times (s-a)\times (s-b)\times (s-c)}[/tex]

and s = [tex]\frac{a+b+c}{2}[/tex]

I.e  s = [tex]\frac{5+2+\sqrt{13}}{2}[/tex]

Or. s =  [tex]\frac{7+\sqrt{13}}{2}[/tex]

So, A = [tex]\sqrt{(\frac{(7+\sqrt{13})}{2})\times ((\frac{(7+\sqrt{13})}{2})-5)\times (\frac{7+\sqrt{13}}{2}-2)\times (\frac{7+\sqrt{13}}{2}-\sqrt{13})}[/tex]

Or, A = [tex]\sqrt{(\frac{(7+\sqrt{13})}{2})\times (\frac{(\sqrt{13}-3)}{2})\times (\frac{4+\sqrt{13}}{2})\times (\frac{7-\sqrt{13}}{2})}[/tex]

Or, A = [tex]\frac{3}{2}[/tex] × [tex]\sqrt{1+\sqrt{13} }[/tex]

∴  Area of triangle = 1.5[tex]\sqrt{4.6}[/tex]

Hence The area of triangle for the given coordinates is  1.5[tex]\sqrt{4.6}[/tex]  Answer

Answer:

3

Step-by-step explanation:

ACCESS MORE