Respuesta :
Answer:
The area of triangle for the given coordinates is 1.5[tex]\sqrt{4.6}[/tex]
Step-by-step explanation:
Given coordinates of triangles as
A = (0,0)
B = (3,4)
C = (3,2)
So, The measure of length AB = a = [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]
Or, a = [tex]\sqrt{(3-0)^{2}+(4-0)^{2}}[/tex]
Or, a = [tex]\sqrt{9+16}[/tex]
Or, a = [tex]\sqrt{25}[/tex]
∴ a = 5 unit
Similarly
The measure of length BC = b = [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]
Or, b = [tex]\sqrt{(3-3)^{2}+(2-4)^{2}}[/tex]
Or, a = [tex]\sqrt{0+4}[/tex]
Or, b = [tex]\sqrt{4}[/tex]
∴ b = 2 unit
And
So, The measure of length CA = c = [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]
Or, c = [tex]\sqrt{(3-0)^{2}+(2-0)^{2}}[/tex]
Or, c = [tex]\sqrt{9+4}[/tex]
Or, c = [tex]\sqrt{13}[/tex]
∴ c = [tex]\sqrt{13}[/tex] unit
Now, area of Triangle written as , from Heron's formula
A = [tex]\sqrt{s\times (s-a)\times (s-b)\times (s-c)}[/tex]
and s = [tex]\frac{a+b+c}{2}[/tex]
I.e s = [tex]\frac{5+2+\sqrt{13}}{2}[/tex]
Or. s = [tex]\frac{7+\sqrt{13}}{2}[/tex]
So, A = [tex]\sqrt{(\frac{(7+\sqrt{13})}{2})\times ((\frac{(7+\sqrt{13})}{2})-5)\times (\frac{7+\sqrt{13}}{2}-2)\times (\frac{7+\sqrt{13}}{2}-\sqrt{13})}[/tex]
Or, A = [tex]\sqrt{(\frac{(7+\sqrt{13})}{2})\times (\frac{(\sqrt{13}-3)}{2})\times (\frac{4+\sqrt{13}}{2})\times (\frac{7-\sqrt{13}}{2})}[/tex]
Or, A = [tex]\frac{3}{2}[/tex] × [tex]\sqrt{1+\sqrt{13} }[/tex]
∴ Area of triangle = 1.5[tex]\sqrt{4.6}[/tex]
Hence The area of triangle for the given coordinates is 1.5[tex]\sqrt{4.6}[/tex] Answer