The equation a = StartFraction one-half EndFraction left-parenthesis b 1 plus b 1 right-parenthesis.(b1 + b2)h can be used to determine the area, a, of a trapezoid with height, h, and base lengths, b1 and b2. Which are equivalent equations? Check all that apply.


2a/h -b2=b1

a/2h-b2=b1

2a-b2/h=b1

2a/b1+b2=h

a/2(b1 +b2)=h

Respuesta :

Answer:

The equivalent expressions are:

[tex]b1=\frac{2a}{h}-b2[/tex]

[tex]h=\frac{2a}{b1+b2}[/tex]

Step-by-step explanation:

Given equation for finding area of a trapezoid:

[tex]a=\frac{1}{2}(b1+b2)h\\[/tex]

where [tex]a[/tex] represents area, [tex]h[/tex] represents height and [tex]b1\ and\ b2[/tex] represents the base lengths of the trapezoid.

Evaluating [tex]h[/tex] by rearranging the equation to find an equivalent equation.

Multiplying both sides by 2.

[tex]2\times a=2\times\frac{1}{2}(b1+b2)h[/tex]

[tex]2a=(b1+b2)h[/tex]

Dividing both sides by [tex]b1+b2[/tex]

[tex]\frac{2a}{b1+b2}=\frac{(b1+b2)h}{b1+b2}[/tex]

[tex]\frac{2a}{b1+b2}=h[/tex]

[tex]\therefore h=\frac{2a}{b1+b2}[/tex]

Evaluating [tex]b1[/tex] by rearranging the equation to find an equivalent equation.

Multiplying both sides by 2.

[tex]2\times a=2\times\frac{1}{2}(b1+b2)h[/tex]

[tex]2a=(b1+b2)h[/tex]

Dividing both sides by [tex]h[/tex]

[tex]\frac{2a}{h}=\frac{(b1+b2)h}{h}[/tex]

[tex]\frac{2a}{h}=b1+b2[/tex]

Subtracting both sides by [tex]b2[/tex]

[tex]\frac{2a}{h}-b2=b1+b2-b2[/tex]

[tex]\frac{2a}{h}-b2=b1[/tex]

[tex]\therefore b1=\frac{2a}{h}-b2[/tex]

Answer:

A and D

Step-by-step explanation:

I did the assignment

ACCESS MORE