Respuesta :
Answers:
a) 0.144 Hz
b) 0.904 rad/s
c) 11.818 m
d)[tex]9.77 m/s^{2}[/tex]
Explanation:
The rest of the question is written below:
a) Calculate the frequency of oscillation (in Hertz) of the chandelier
b) Calculate the angular frequency [tex]\omega[/tex] of the chandelier in radians/ second
c) Determine the length [tex]L[/tex] in meters of the chandelier
d) That evening, while hanging out in JJ. Thompson's House O' Blues, you notice that (coincidentally) there is a chandelier identical in every way to the one at the Michelson exhibit except this one swings back and forth 0.01 seconds slower, so the period is [tex]T+0.01 s[/tex]. Determine the acceleration due to gravity in [tex]m/s^{2}[/tex] at the club.
a) The frequency [tex]f[/tex] has an inverse relation with the period [tex]T[/tex]:
[tex]f=\frac{1}(T}[/tex] (1)
Where [tex]T=6.9 s[/tex]
[tex]f=\frac{1}(6.9s}=0.144 Hz[/tex] (2)
b) The angular frequency [tex]\omega[/tex] is given by:
[tex]\omega=2\pi f=\frac{2 \pi}{T}[/tex] (3)
[tex]\omega=2\pi (0.144 Hz)[/tex] (4)
[tex]\omega=0.904 rad/s[/tex] (5)
c) Another expression for the period is:
[tex]T=2 \pi \sqrt{\frac{L}{g}}[/tex] (6)
Where:
[tex]L[/tex] is the length of the pendulum
[tex]g=9.8 m/s^{2}[/tex] is the mean acceleration due gravity
Isolating [tex]L[/tex]:
[tex]L=\frac{T^{2} g}{4 \pi^{2}}[/tex] (7)
[tex]L=\frac{(6.9)^{2} (9.8 m/s^{2})}{4 \pi^{2}}[/tex] (8)
[tex]L=11.818 m[/tex] (9)
d) In this case the period of the pendulum is [tex]T_{p}=T+0.01 s[/tex]. So, we will use equation (7) with this period and find [tex]g[/tex]:
[tex]g=\frac{4 \pi^{2}L}{(T+0.01 s)^{2}}[/tex] (10)
[tex]g=\frac{4 \pi^{2}(11.818 m)}{(6.9 s+0.01 s)^{2}}[/tex] (11)
[tex]g=9.77 m/s^{2}[/tex] (12) This is the acceleration due gravity at the place, which is near the mean value of [tex]9.8 m/s^{2}[/tex]