Answer:
Rate at which volume of the snowball decreasing = 90.48 cm³/min
Step-by-step explanation:
[tex]\texttt{Volume of sphere, V =}\frac{4}{3}\pi r^3=\frac{4}{3}\pi \left (\frac{D}{2} \right )^3=\frac{1}{6}\pi D^3[/tex]
Differentiating with respect to time,
[tex]\frac{dV}{dt}=\frac{d}{dt}\left (\frac{1}{6}\pi D^3 \right )=\frac{1}{6}\pi \times 3D^2\frac{dD}{dt}\\\\\frac{dV}{dt}=\frac{1}{2}\pi D^2\frac{dD}{dt}[/tex]
Substituting
D = 12 cm and rate of change of diameter = 0.4 cm/min.
[tex]\frac{dV}{dt}=\frac{1}{2}\pi D^2\frac{dD}{dt}\\\\\frac{dV}{dt}=\frac{1}{2}\pi \times 12^2\times 0.4=90.48cm^3/min[/tex]
Rate at which volume of the snowball decreasing = 90.48 cm³/min