Answer:
Work done by the engine is 12876.32 joules.
Explanation:
We know that,
[tex]\mathrm{W}=\mathrm{KE}+\mathrm{PE}+\mathrm{W}_{\mathrm{f}}[/tex]
Where,
W = work done by engine
[tex]\mathrm{KE}=\mathrm{kinetic} \text { energy at top of driveway }=\frac{1}{2}\left(\mathrm{mV}^{2}\right)[/tex]
m = mass of the car = 964kg.
V = speed of car at top of driveway = 3 m/sec
PE = potential energy at top of driveway = m × g × h
[tex]\mathrm{g}=\text { acceleration due to gravity }=9.8 \mathrm{m} / \mathrm{s}^{2}[/tex]
h = vertical height of driveway = 0.6 m
[tex]\mathrm{W}_{\mathrm{t}}=\text { work done against friction }=2870[/tex]
Substituting values,
[tex]W=\frac{1}{2} \times(964) \times\left(3^{2}\right)+964 \times(9.8) \times(0.6)+2870[/tex]
[tex]W=0.5 \times 964 \times 9+964 \times 9.8 \times 0.6+2870[/tex]
[tex]\mathrm{W}=4338+5668.32+2870[/tex]
W = 12876.32 joules
Work done by the engine is 12876.32 joules.