Answer: 127 nm
Explanation:
Given:
Energy required to break nitrogen-nitrogen bond = 945 kJ/mol =945000 J/mol
1 mole = [tex]6.022\times 10^{23}[/tex] molecules
[tex]6.022\times 10^{23}[/tex] molecules require energy to break nitrogen-nitrogen bond = 945000 kJ
1 molecule require energy to break nitrogen-nitrogen bond =[tex]\frac{945000}{6.022\times 10^{23}}\times 1=1.569\times 10^{-18} kJ[/tex]
The relationship between wavelength and energy of the wave follows the equation:
[tex]E=\frac{hc}{\lambda}[/tex]
where,
E= energy = [tex]1.569\times 10^{-18} kJ[/tex]
h = Planck’s constant =[tex]6.626\times 10^{-34}J[/tex]
c = speed of light = [tex]3\times 10^8 m/s[/tex]
[tex]\lambda [/tex] = wavelength of the wave = ?
Where,
[tex]\lambda=\frac{h\times c}{E}=\frac{6.626\times 10^{-34}J\times 3\times 10^8 m/s}{1.569\times 10^{-18}J}=1.267\times 10^{-7} m=127nm[/tex]
[tex](1nm=10^{-9}m[/tex]
Thus the maximum wavelength of light for which a nitrogen-nitrogen triple bond could be broken by absorbing a single photon is 127 nm