It takes 945 to break a nitrogen-nitrogen triple bond. Calculate the maximum wavelength of light for which a nitrogen-nitrogen triple bond could be broken by absorbing a single photon.

Respuesta :

Answer: 127 nm

Explanation:

Given:

Energy required to break nitrogen-nitrogen bond = 945 kJ/mol =945000 J/mol

1 mole = [tex]6.022\times 10^{23}[/tex] molecules

[tex]6.022\times 10^{23}[/tex] molecules require energy to break nitrogen-nitrogen bond = 945000 kJ

1 molecule require energy to break nitrogen-nitrogen bond =[tex]\frac{945000}{6.022\times 10^{23}}\times 1=1.569\times 10^{-18} kJ[/tex]

The relationship between wavelength and energy of the wave follows the equation:

[tex]E=\frac{hc}{\lambda}[/tex]

where,

E= energy = [tex]1.569\times 10^{-18} kJ[/tex]

h = Planck’s constant =[tex]6.626\times 10^{-34}J[/tex]

c = speed of light  = [tex]3\times 10^8 m/s[/tex]

[tex]\lambda [/tex] = wavelength of the wave = ?

Where,

[tex]\lambda=\frac{h\times c}{E}=\frac{6.626\times 10^{-34}J\times 3\times 10^8 m/s}{1.569\times 10^{-18}J}=1.267\times 10^{-7} m=127nm[/tex]  

[tex](1nm=10^{-9}m[/tex]

Thus the maximum wavelength of light for which a nitrogen-nitrogen triple bond could be broken by absorbing a single photon is 127 nm

ACCESS MORE