Answer: The potential of the given cell is 0.856 V
Explanation:
The substance having highest positive [tex]E^o[/tex] potential will always get reduced.
Half reactions for the given cell follows:
Oxidation half reaction: [tex]Ag\rightarrow Ag^{+}+e^-;E^o_{Ag^{+}/Ag}=0.803V[/tex] ( × 2)
Reduction half reaction: [tex]H_2O_2(aq.)+2H^{+}+2e^-\rightarrow 2H_2O;E^o=1.78V[/tex]
Net reaction: [tex]2Ag(s)+H_2O_2(aq.)+2H^{+}\rightarrow 2Ag^{+}+2H_2O[/tex]
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:
[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]
Putting values in above equation, we get:
[tex]E^o_{cell}=1.78-(0.803)=0.977V[/tex]
To calculate the EMF of the cell, we use the Nernst equation, which is:
[tex]E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Ag^{+}]^2}{[H^{+}]^2[H_2O_2]}[/tex]
where,
[tex]E_{cell}[/tex] = electrode potential of the cell = ?V
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +0.977 V
R = Gas constant = 8.314 J/K mol
T = temperature = 279 K
F = Faraday's constant = 96500 C
n = number of electrons exchanged = 2
[tex][Ag^{+}]=0.559M[/tex]
[tex][H^{+}]=0.00393M[/tex]
[tex][H_2O_2]=0.863M[/tex]
Putting values in above equation, we get:
[tex]E_{cell}=0.977-\frac{2.303\times 8.314\times 279}{2\times 96500}\times \log(\frac{(0.559)^2}{(0.00393)^2\times (0.863)})\\\\E_{cell}=0.856V[/tex]
Hence, the potential of the given cell is 0.856 V