Respuesta :

Required Expression is [tex]\frac{\textbf{1}}{\textbf{10}}(\textbf{x}^{\textbf{3}}\textbf{+}\textbf{2x}^{\textbf{2}}\textbf{-}\textbf{5x}\textbf{-}\textbf{6})[/tex]

Step-by-step explanation:

       Assuming that the question is to find a third degree expression [tex]f(x)[/tex] that has zeros [tex]-3,-1,2[/tex] and the equation [tex]y=f(x)[/tex] passes through [tex](4,7)[/tex],

       If the roots/zeroes of a [tex]n^{th}[/tex] order expression are given as [tex]r_{1},r_{2},r_{3}..... r_{n}[/tex], the expression is given by [tex]f(x)=c(x-r_{1})(x-r_{2})(x-r_{3}).....(x-r_{n})[/tex].

       Since we know the three roots of the third degree expression, the function is

[tex]f(x)=c(x-(-3))(x-(-1))(x-2)=c(x+3)(x+1)(x-2)=c(x^{3}+2x^{2}-5x-6)[/tex]

       Also, [tex]y=f(x)[/tex] passes through [tex](4,7)[/tex], so

[tex]7=c(4^{3}+2(4)^{2}-5(4)-6)\\7=c(64+32-20-6)=70c\\c=\frac{1}{10}[/tex]

∴Required expression is [tex]\frac{1}{10}(x^{3}+2x^{2}-5x-6)[/tex]

ACCESS MORE