Respuesta :
Answer:
a) V = 0 V, b) V = -2.11 10⁵ V c) W = 42.3 J
Explanation:
It is electrical potential due to point charges is given by
V = k ∑ qi / ri
Let's start by reducing the quantities to SI units
q1 = +2.00 μC = 2.00 10⁻⁶ C
q2 = - 2.00 μC = -2.00 10⁻⁶ C
q3 = - 2.00 μC = - 2.00 10⁻⁶ C
L = 2.50 cm = 0.0250 m
Part A
Let's apply the formula to our case
The distance of each load to point a, we can find it using Pythagoras' theorem
a² = (L /2)²+ (L /2)² = L² 2/4
a = L /2 √2
a = 0.025/2 √2
a = 1.77 10⁻² m
V = k (q1 / r1 + q2 / r2)
V = k (2 10⁻⁶ /a -2 10⁻⁶ /a)
V = 0 V
Part B
Let's look for the distance to point b
[tex]r_{b}[/tex]² = L² + L² = L² 2
[tex]r_{b}[/tex] = L √ 2
[tex]r_{b}[/tex] = 2.5 10⁻² √2
[tex]r_{b}[/tex] = 3.54 10⁻² m
Let's calculate the potential
V = k (q1 / [tex]r_{b}[/tex] + q2 / L)
V = 8.99 10⁹ (2 10⁻⁶/3.54 10⁻² - 2 10⁻⁶ / 2.50 10⁻²)
V= 8.99 10⁹ (0.5649 10⁻⁴ - 0.80 10⁻⁴)
V = -2.11 10⁵ V
Part C
Electrical work is equal to the change in potential energy, so we will calculate the potential energy at each point
W = ΔU
For point a
[tex]U_{a}[/tex] = k (q₁q₃ / a + q₂q₃ / a)
[tex]U_{a}[/tex] = k (2 3 / a - 2 3 / a)
[tex]U_{a}[/tex] = 0
For point b
[tex]U_{b}[/tex] = k (q₁q₃ / rb + q₂q₃ / L)
[tex]U_{b}[/tex] = 8.99 10⁹ (-2 2 10⁻¹² / 3.54 10⁻² + 2 2 10⁻¹² / 2.50 10⁻²)
[tex]U_{b}[/tex] = 8.99 10⁹ (-1.13 + 1.6) 10⁻¹⁰
[tex]U_{b}[/tex] = 4.23 101 J
W = [tex]U_{b}[/tex] -[tex]U_{a}[/tex]
W = 42.3 J