Respuesta :
Answer:
366.90149 m/s
923.821735 J
324.734 J
Initial Kinetic energy > Final kinetic energy
Explanation:
[tex]m_1[/tex] = Mass of block = 0.072 kg
[tex]m_2[/tex] = Mass of bullet = 4.67 g
[tex]u_1[/tex] = Initial Velocity of block = 0
[tex]u_2[/tex] = Initial Velocity of bullet = 629 m/s
[tex]v_1[/tex] = Final Velocity of block = 17 m/s
[tex]v_2[/tex] = Final Velocity of bullet
In this system the linear momentum is conserved
[tex]m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}\\\Rightarrow v_2=\frac{m_{1}u_{1}+m_{2}u_{2}-m_1v_1}{m_2}\\\Rightarrow v_2=\frac{0.072\times 0+4.67\times 10^{-3}\times 629-0.072\times 17}{4.67\times 10^{-3}}\\\Rightarrow v_2=366.90149\ m/s[/tex]
Final Velocity of bullet is 366.90149 m/s
The initial kinetic energy
[tex]K_i=\frac{1}{2}m_2u_2^2\\\Rightarrow K_i=\frac{1}{2}4.67\times 10^{-3}\times 629^2\\\Rightarrow K_i=923.821735\ J[/tex]
The final kinetic energy
[tex]K_f=\frac{1}{2}m_2v_2^2+\frac{1}{2}m_1v_1^2\\\Rightarrow K_f=\frac{1}{2}4.67\times 10^{-3}\times 366.90149^2+\frac{1}{2}0.072\times 17^2\\\Rightarrow K_f=324.734\ J[/tex]
Initial Kinetic energy > Final kinetic energy
To solve the problem we must know about the concept of the law of conservation of momentum.
What is the law of conservation of momentum?
According to the law of conservation of momentum, the momentum of a system is always conserved, therefore, the sum of the initial momentum is equal to the sum of the final momentum.
Given to us
The mass of the bullet, m = 4.67 g= 0.00467 kg
The mass of the wooden block, M = 0.072 = kg
Initial velocity of the bullet, [tex]u_b[/tex] = 629 m/s
Initial velocity of the wooden block, [tex]u_A[/tex] = 0 m/s (rest),
The final velocity of the wooden block, [tex]v_A[/tex] = 17 m/s
A.) We know about the law of conservation of momentum, therefore,
[tex]Mu_A + mu_b = Mv_A + mv_b[/tex]
Substitute the values,
[tex](0.072 \times 0)+ (0.00467 \times 629)= (0.072 \times 17) + (0.00467 \times v_b)[/tex]
[tex]v_b[/tex] = 366.9 m/s
Thus, the final velocity of the bullet is 366.9 m/s.
B.) The initial kinetic energy of the system,
The initial kinetic energy of the system can be found by adding the kinetic energy of the wooden block and the kinetic energy of the bullet.
[tex]KE_i = (KE_A)_i + (KE_b)_i[/tex]
But since the block was at rest the kinetic energy of the block will be 0 at the initial phase,
[tex]KE_i = (KE_A)_i + (KE_b)_i\\\\KE_i = (KE_b)_i\\\\KE_i = \dfrac{1}{2}m_bu_b^2[/tex]
Substitute the values,
[tex]KE_i = \dfrac{1}{2}\times 0.00467 \times 629^2\\\\KE_i = 923.8217\rm\ J[/tex]
The final kinetic energy of the system,
The final kinetic energy of the system can be found by adding the kinetic energy of the wooden block and the kinetic energy of the bullet.
[tex]KE_f = (KE_A)_f + (KE_b)_f\\\\KE_f = (\dfrac{1}{2}\times M \times v_A^2)_f + (\dfrac{1}{2}\times m \times v_b^2)_f[/tex]
Substitute the values,
[tex]KE_f = (\dfrac{1}{2}\times 0.072 \times 17^2)_f + (\dfrac{1}{2}\times 0.00467 \times 366.9^2)_f\\\\KE_f = 10.404+314.3274\\\\KE_f = 324.734\rm\ J[/tex]
Hence, the initial kinetic energy of the system is more than the final kinetic energy of the system.
Learn more about the Law of conservation of momentum:
https://brainly.com/question/1113396