Answer:
[tex]3x^{2} +24x+48[/tex]
Step-by-step explanation:
given [tex]3x^{2} +24x....[/tex] choose [tex]a(x+b)^{2}[/tex] (plus sign)
and [tex]a(x+b)^{2}[/tex] = [tex]a(x^{2} +2bx+b^{2}); common factor (3)[/tex]
[tex]3(x^{2} +8x+b^{2} )[/tex]; where if a=3, x=1 and 2bx=8 then 2.b.1=8 → b=8/2=4;
[tex]3(x^{2} +8x+b^{2} )=3(x^{2} +8x+4^{2})=3(x^{2} +8x+16)[/tex];
Finally [tex]\sqrt{x^{2} } =x;\sqrt{16}=4[/tex]; [tex]3(x+4)^{2} =3(x^{2} +8x+16)=3x^{2} +24x+48[/tex]