Answer:
The magnitude of the magnetic field at point T is [tex]3.13\times 10^{- 6}\ T[/tex]
Solution:
As per the question:
Current, I = 5.5 A
From the figure shown:
[tex]\theta = 45^{\circ}[/tex]
Now, the net magnetic field, B at the point is given by:
Magnetic field due to one part of the wire,
[tex]B = \frac{\mu_{o}I}{4\pi r}(sin\theta+ sin90^{\circ}) = \frac{\mu_{o}I}{4\pi r}(sin\theta + sin90^{\circ})[/tex]
[tex]B' = 2\times B[/tex]
[tex]B' = 2\times \frac{\mu_{o}I}{4\pi r}(sin45^{\circ} + sin90^{\circ})[/tex]
[tex]B' = 2\times \frac{\mu_{o}I}{4\pi r}(\frac{1}{\sqrt{2}} + 1)[/tex]
[tex]B' = \frac{2\times 10^{- 7}\times 5.5}{0.6}(\frac{1}{\sqrt{2}} + 1)[/tex]
[tex]B' = 3.13\times 10^{- 6}\ T[/tex]