Answer:
The sum of first 30 terms of the arithmetic progression is 2160.
Explanation:
For an arithmetic progression, the sum of first [tex]n[/tex] terms with first term as [tex]a[/tex] and common difference [tex]d[/tex] is given as:
[tex]S_n=\frac{n}{2}(2a+(n-1)d)[/tex]
Now, it is given that:
[tex]For\ n=10,S_n=120\\For\ n=20,S_n=840[/tex]
Now, plug in these values and frame two equations in [tex]a\ and\ d[/tex]
[tex]S_{10}=\frac{10}{2}(2a+(10-1)d)\\120=5(2a+9d)\\2a+9d=\frac{120}{5}\\2a+9d=24------------1[/tex]
[tex]S_{20}=\frac{20}{2}(2a+(20-1)d)\\840=10(2a+19d)\\2a+19d=\frac{840}{10}\\2a+19d=84-----------2[/tex]
Now, we solve equations (1) and (2) for [tex]a\ and\ d[/tex]. Subtract equation (1) from equation (2). This gives,
[tex]2a+19d-2a-9d=84-24\\19d-9d=60\\10d=60\\d=\frac{60}{10}=6[/tex]
Now, plug in the value of [tex]d=6[/tex] in equation (1) and solve for [tex]a[/tex].
[tex]2a+9(6)=24\\2a+54=24\\2a=24-54\\2a=-30\\a=\frac{-30}{2}=-15[/tex]
Plug in the values of [tex]a=-15,\ n=30\ and\ d=6[/tex] in the sum formula to find the sum of first 30 terms.
Now, the sum of first 30 terms is given as:
[tex]S_{30}=\frac{30}{2}(2(-15)+(30-1)(6))\\S_{30}=15(-30+29(6))\\S_{30}=15(-30+174)\\S_{30}=15(144)=2160[/tex]
Therefore, the sum of first 30 terms of the arithmetic progression is 2160.