Answer:
[tex]l\approx 19m[/tex]
Explanation:
Given:
Tension in the string, [tex]F_T=33N[/tex]
mass of the string, [tex]m=0.45kg[/tex]
time taken to transmit the sound, [tex]t=0.51 s[/tex]
We have the relation of the given with velocity 'v' as:
[tex]v^2=\frac{F_T}{\mu}[/tex] ................................(1)
where:
[tex]{\mu}[/tex]= linear mass density of the string=[tex]\frac{m}{l}[/tex]
we know:
[tex]v=\frac{l}{t}[/tex]
where:
[tex]l=[/tex]length of the string
Putting the corresponding values in the eq. (1)
[tex](\frac{l}{t})^2=\frac{F_T}{(\frac{m}{l}) }[/tex]
[tex]l=\frac{F_T\times t^2}{m}[/tex]
[tex]\Rightarrow l=\frac{33\times 0.51^2}{0.45}[/tex]
[tex]l=19.074\,m[/tex]
[tex]l\approx 19m[/tex]