Answer:
[tex]\alpha=504.0357\frac{rad}{s^2}[/tex]
Explanation:
Angular acceleration is defined as the change experienced by angular velocity per unit of time. Mathematically can be expressed as:
[tex]\alpha=\frac{\Delta \omega}{\Delta t} =\frac{\omega_f-\omega_o}{t_f-t_i}[/tex]
From the rest:
[tex]\omega_o=0\\t_0=0[/tex]
Now, before calculating the angular acceleration, let's convert rev/min to rad/s
[tex]35040\frac{rev}{min} *\frac{2\pi rad}{1rev} *\frac{1 min}{60s} =1168\pi \frac{rad}{s}[/tex]
Finally, replacing the data in the angular acceleration equation:
[tex]\alpha=\frac{1168\pi -0}{7.28-0} =\frac{1168\pi}{7.28}=504.0357444\approx504.0357 \frac{rad}{s}[/tex]