Answer:
ABCD is a RHOMBUS or a SQUARE.
Step-by-step explanation:
The coordinates are A(-6, 6), B(-2, 8), C(0, 4), and D(-4, 2).
By DISTANCE FORMULA:
The length of the segment with coordinates X(a,b) and Y(c,d) is given as:
[tex]XY = \sqrt{(c-a)^2 + (d-b)^2}[/tex]
Now, similarly, the lengths of the segments are:
[tex]AB = \sqrt{(-2 -(-6))^2 + (8-6)^2}[/tex]
[tex]=\sqrt{(4)^2 + (2)^2} = \sqrt{16 + 4} = \sqrt{20}[/tex]
⇒ The length of the segment AB = √ 20 units
[tex]BC = \sqrt{(0 -(-2))^2 + (4-8)^2}[/tex]
[tex]=\sqrt{(2)^2 + (-4)^2} = \sqrt{4 + 16} = \sqrt{20}[/tex]
⇒ The length of the segment BC = √ 20 units
[tex]CD = \sqrt{(0 -(-4))^2 + (2-4)^2}[/tex]
[tex]=\sqrt{(4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20}[/tex]
⇒ The length of the segment CD= √ 20 units
[tex]AD = \sqrt{(-6 -(-4))^2 + (6-2)^2}[/tex]
[tex]=\sqrt{(-2)^2 + (4)^2} = \sqrt{4 + 16} = \sqrt{20}[/tex]
⇒ The length of the segment AD = √ 20 units
[tex]AC = \sqrt{(0 -(-6))^2 + (4-6)^2}[/tex]
[tex]=\sqrt{(6)^2 + (-2)^2} = \sqrt{36 + 4} = \sqrt{40}[/tex]
⇒ The length of the diagonal AC = √ 40 units
[tex]BD = \sqrt{(-2 +4)^2 + (8-2)^2}[/tex]
[tex]=\sqrt{(2)^2 + (6)^2} = \sqrt{36 + 4} = \sqrt{40}[/tex]
⇒ The length of the diagonal BD = √ 40 units
Since, here the length of all segments is √ 20 units.
⇒AB = BC = CD = AD = √ 20 units
and Diagonal AC = BD
⇒ ABCD is a RHOMBUS or SQUARE.