Answer:
[tex]\frac{dI}{dt}=-0.00016 A/s[/tex]
Step-by-step explanation:
We are given that
By ohm's law
[tex]V=IR[/tex]
R=389 ohm
I=0.03 A
[tex]\frac{dV}{dt}=-0.06V/s[/tex]
[tex]\frac{dR}{dt}=0.07ohm/s[/tex]
We have to find rate of change of current I means [tex]\frac{dI}{dt}[/tex]
Differentiate the equation w.r.t t
[tex]\frac{dV}{dt}=\frac{dI}{dt}R+I\frac{dR}{dt}[/tex]
Substitute the values then we get
[tex]-0.06=\frac{dI}{dt}\times 389+0.03\times 0.07[/tex]
[tex]-0.06=389\frac{dI}{dt}+0.0021[/tex]
[tex]-0.06-0.0021=389\frac{dI}{dt}[/tex]
[tex]-0.0621=389\frac{dI}{dt}[/tex]
[tex]\frac{dI}{dt}=\frac{-0.0621}{389}=-0.000160 A/s[/tex]
Hence, the current I is changing at the rate=-0.00016A/s