Answer:
[tex]\frac{dP}{dt} \left \{ {{t=2048} =4.498millions[/tex]
Step-by-step explanation:
In order to find the instantaneous rate of change of the population in the year 2048 it is necessary to derivate the function P(t), so:
[tex]\frac{dP(t)}{dt} =317*0.01*e^{0.01t} =3.17*e^{0.01t}[/tex]
Now, let's find the total of years between 2013 and 2048:
[tex]2048-2013=35[/tex]
Finally, let's evaluate the derivative function at t=35
[tex]\frac{dP}{dt} \left \{ {{t=2048} = 3.17*e^{0.01*(35)} =3.17*e^{0.35}=3.17*1.419067549\\[/tex]
[tex]\frac{dP}{dt} \left \{ {{t=2048} = 4.498444129 \approx4.498millions[/tex]