Respuesta :

Answer:

[tex]-10,-12,-14,-16,-18,-20,-22,-24,-26,-28,...[/tex]

Step-by-step explanation:

we know that

In an Arithmetic Sequence the difference between one term and the next is a constant, called the common difference

The formula for an Arithmetic Sequence is equal to

[tex]a_n=a_1+(n-1)d[/tex]

where

d is the common difference

n is the number of terms

a_1 is the first term of the sequence

In this problem we have

[tex]a_1=-10\\d=-2[/tex]

substitute

[tex]a_n=-10+(n-1)(-2)[/tex]

[tex]a_n=-10-2n+2[/tex]

[tex]a_n=-2n-8[/tex]

so

Find the first ten terms

[tex]a_1=-10[/tex]

For n=2 ----> [tex]a_2=-2(2)-8=-12[/tex]

For n=3 ----> [tex]a_3=-2(3)-8=-14[/tex]

For n=4 ----> [tex]a_4=-2(4)-8=-16[/tex]

For n=5 ----> [tex]a_5=-2(5)-8=-18[/tex]

For n=6 ----> [tex]a_6=-2(6)-8=-20[/tex]

For n=7 ----> [tex]a_7=-2(7)-8=-22[/tex]

For n=8 ----> [tex]a_8=-2(8)-8=-24[/tex]

For n=9 ----> [tex]a_9=-2(9)-8=-26[/tex]

For n=10 ----> [tex]a_1_0=-2(10)-8=-28[/tex]

The sequence is

[tex]-10,-12,-14,-16,-18,-20,-22,-24,-26,-28,...[/tex]

ACCESS MORE