Respuesta :

Answer:

Simplified form of [tex]\frac{\frac{X^2+7X+10}{X-2} }{\frac{X^2-25}{X-8} }   = \frac{4(X+2)}{(X-5)}[/tex]

Step-by-step explanation:

Here, the given expression is

[tex]\frac{\frac{X^2+7X+10}{X-2} }{\frac{X^2-25}{X-8} }   = \frac{P(X)}{Q(X)} \\\implies P(X) = {\frac{X^2+7X+10}{X-2} , Q(X) = \frac{X^2-25}{4X-8}[/tex]

Now, using the Algebraic Identities:

[tex](a^2 - b^2) = (a+b)(a-b)[/tex]

Simplify P(X) and Q(X) separably:

[tex]P(X) = \frac{X^2+7X+10}{X-2} =   \frac{X^2+5X + 2X+10}{X-2} \\\implies P(X) = {\frac{X(X + 5) +2(X+5)}{X-2}   \\= P(X) = {\frac{(X+ 5)(X+2)}{X-2} \\\\\implies  P(X) =  {\frac{(X+ 5)(X+2)}{X-2}[/tex]

Similarly, Q(X) = [tex]\frac{X^2-25}{4X-8}  = \frac{(X-5)(X+5)}{4X-8} \\\implies Q(X) =  \frac{(X-5)(X+5)}{4(X-2)}[/tex]

hence, the given fraction is simplified to

[tex]\frac{P(X)}{Q(X)}  = \frac{\frac{(X+ 5)(X+2)}{(X-2)} }{\frac{(X-5)(X+5)}{4(X-2)} }[/tex]

[tex]\implies \frac{P(X)}{Q(X)}  = \frac{\frac{(X+ 5)(X+2)}{(X-2)} }{\frac{(X-5)(X+5)}{4(X-2)} }  ={\frac{(X+ 5)(X+2)}{(X-2)} } \times  {\frac{ 4(X-2)}{(X-5)(X+5)}   = \frac{4(X+2)}{(X-5)}[/tex]

Hence, the simplified form of [tex]\frac{\frac{X^2+7X+10}{X-2} }{\frac{X^2-25}{X-8} }   = \frac{4(X+2)}{(X-5)}[/tex]

Answer: 4(x + 2) / x - 5

Step-by-step explanation: A P E X (the parenthesis confused the heck out of me)

ACCESS MORE