Answer:
[tex]17.46^{\circ}[/tex]
Explanation:
[tex]a_{cm}=\frac {gsin\theta}{1+\frac {I}{MR^{2}}}[/tex] but for sphere [tex]I=\frac {2MR^{2}}{3}[/tex] where [tex]a_{cm}[/tex] is linear acceleration, g is acceleration due to gravity whose value is taken as [tex]9.81 m/s^{2}[/tex], [tex]\theta[/tex] is the angle of inclination, M is mass of object and R is radius, I is rotational inertia.
Substituting 0.18 g for [tex]a_{cm}[/tex] we obtain
[tex]0.18g=\frac {gsin\theta}{1+\frac {I}{MR^{2}}}=\frac {gsin\theta}{1+\frac {\frac {2MR^{2}}{3} }{MR^{2}}}[/tex]
[tex]0.18g=\frac {gsin \theta}{\frac {5}{3}}[/tex]
[tex]0.18*9.81*\frac {5}{3}=9.81 sin\theta[/tex]
[tex]\theta=sin^{-1}(0.304692654)=17.45760312^{\circ}\approx 17.46^{\circ}[/tex]