Follow the directions in the picture.

Answer:
The y-intercept of Line A is 6
And The y-intercept of Line B is 1
Step-by-step explanation:
Given;
Equation of Line A:
[tex]y-4=-2\times(x-1)[/tex]
[tex]y-4=-2x+2[/tex]
[tex]y-4+4=-2x+2+4[/tex] (By adding 4 on both sides)
[tex]y=-2x+6[/tex] (Equation 1)
We have,
For straight line in coordinate geometry;
[tex]y=mx+b[/tex] Where 'b' is intercept on y-axis.
By comparing this with equation-1;
[tex]b=6[/tex] and [tex]m=-2[/tex]
The y-intercept of Line A is 6
Line B:
Given;
'x' values are [tex]-1[/tex] , [tex]0[/tex] and [tex]1[/tex]
And 'y' values [tex]0[/tex] , [tex]1[/tex] and [tex]2[/tex]
We know,
[tex]Slope(m)=\frac{y_{2}-y_{1} }{x_{2}-x_{1}}[/tex]
By plug any two values of 'x' and 'y' in above equation,
[tex]m=\frac{2-1}{1-0}[/tex]
[tex]m=1[/tex]
Now,
For straight line in coordinate geometry;
[tex]y=mx+b[/tex]
Plug [tex]m=1[/tex] and also any 'x' and 'y' values in above equation;
[tex]2=1\times1+b[/tex]
[tex]b=1[/tex]
The y-intercept of Line B is 1