Answer:
a) 0.2611
b) 0.6038
Step-by-step explanation:
We are given the following information:
Let x be a binomial random variable with n = 100 and p = 0.2.
P(Success) = 0.2
Formula:
[tex]P(X=x) = \binom{n}{x}.p^x.(1-p)^{n-x}[/tex]
where n is the total number of observations, x is the number of success, p is the probability of success.
a) Now, we are given n = 100 and x = 22
We have to evaluate:
[tex]\bold{P(x > 22)} = P(x = 23) +...+ P(x = 100) \\= \binom{100}{23}(0.2)^{23}(1-0.2)^{100-23} +...+ \binom{100}{100}(0.2)^{100}(1-0.2)^0\\= 0.0719 +...+ 0.000001\\=0.2611[/tex]
b) Now, we are given n = 100 and 18 < x < 28
We have to evaluate:
[tex]\bold{P(18 < x < 28)} = P(x \leq 28) - P(x \leq 18)\\= P(x = 19) +...+ P(x = 27) \\= \binom{100}{19}(0.2)^{19}(1-0.2)^{100-19} +...+ \binom{100}{27}(0.2)^{27}(1-0.2)^{100-27}\\= 0.09807 +...+ 0.0216 = 0.6038[/tex]