Respuesta :
Answer:
v = 0.277 10⁸ m / s and λs = 448.4 nm
Explanation:
This is a relativistic Doppler effect problem, which is described by the equation.
f₀ = [tex]f_{s}[/tex] √ [(1-v / c) / (1 + v / c)]
The speed (v) is positive when the emitter (traffic light) and the observer move away
When approaching
f₀₁ = [tex]f_{s}[/tex] √ [(1 - (- v) / c) / (1 + (- v) / c)]
f₀₁ = [tex]f_{s}[/tex] √ [(1+ v / c) / (1-v / c)]
To get away
f₀₂ =[tex]f_{s}[/tex] √ [(1-v / c) / (1 + v / c)]
as they give the wavelengths let's use the relationship
c = λ f
f = c / λ
c /λ₀₁ = [tex]f_{s}[/tex] √ [(1+ v / c) / (1-v / c)]
c /λ₀₂ = [tex]f_{s}[/tex] √ [(1-v / c) / (1 + v / c)]
Now we have to do some algebra to find the speed, let's write the system of equations,
c / λ₀₁ = [tex]f_{s}[/tex] √ [(1+ v / c) / (1-v / c)]
c / λ₀₂ =[tex]f_{s}[/tex] √ [(1-v / c) / (1 + v / c)]
let's divide the two expressions
λ₀₂ / λ₀₁ = √ ([(1+ v / c) 2 / (1-v / c) 2]
λ₀₂ /λ₀₁ = ([(1+ v / c) / (1-v / c)]
(1+ v / c) =λ₀₂ / λ₀₁ (1-v / c)
v / c (1 + λ₀₂ / λ₀₁) = λ₀₂ / λ₀₁ - 1
v = c (λ₀₂ /λ₀₁ - 1) / (1 +λ₀₂ / λ₀₁)
v = 3 10⁸ (650/540 -1) / 1 + 650/540)
v = 3,10⁸ 0.2037 / 2.2037
v = 0.277 10⁸ m / s
To calculate and the emitted frequency we substitute the Doppler equation
f₀ = fs √ [(1-v / c) / (1 + v / c)]
c / λ₀ = c / λs √ [(1-v / c) / (1 + v / c)]
λs = λ₀ √ [(1-v / c) / (1 + v / c)]
λs = 650 √ (1- 0.277 10⁸/3 10⁸) / (1 + 0.277 10⁸ /3 10⁸8)
λs = 650 √ (0.9077 / 1.9077)
λs = 448.4 nm