Answer: [tex]0.861<\mu< 0.865[/tex]
Step-by-step explanation:
The confidence interval for population mean [tex](\mu)[/tex] is given by :-
[tex]\overline{x}\pm t_c\dfrac{s}{\sqrt{n}}[/tex] , where n=sample size
[tex]\overline{x}[/tex]= sample mean
[tex]s[/tex]=sample standard deviation
[tex]t_c[/tex]= critical t-value (for two tailed )
Let [tex]\mu[/tex] be the confidence interval for the population mean mercury concentration.
As per given , we have
Sample size : n= 28
degree of freedom = 27 [df=n-1]
Sample mean : [tex]\overline{x}=0.863[/tex] cc/cubic meter
Sample standard deviation : s= 0.0036
Significance level : [tex]\alpha=1-0.98=0.02[/tex]
Critical two-tailed test value :
[tex]t_c=t_{\alpha/2,df}=t_{0.01,\ 27}= 2.473[/tex] (Using t-distribution table.)
We assume the population is approximately normal.
Now, the 98% confidence interval for the population mean mercury concentration will be :-
[tex]0.863\pm (2.473)\dfrac{0.0036}{\sqrt{28}}\\\\=0.863\pm(0.002)\\\\=(0.863-0.002,\ 0.863+0.002)=(0.861,\ 0.865)[/tex]
Required confidence interval : [tex]0.861<\mu< 0.865[/tex]