Answer:
Time, t = 0.197 s
Solution:
As per the question:
Constant speed of the ball, v = 5.90 m/s
Coefficient of Kinetic friction, [tex]\mu_{k} = 0.105[/tex]
Now,
the ball will initially rotate with some angular velocity and then slide without rolling.
Friction force, f = [tex]\mu_{k}N[/tex]
where
N = mg = normal reaction
Thus
f = [tex]\mu_{k}mg[/tex] (1)
Now, consider the ball to be a solid sphere,
Moment of inertia of the ball, I = [tex]\frac{2}{5}mR^{2}[/tex] (2)
where
R = radius of the ball
Torque is given by:
[tex]\tau = I\alpha[/tex] (3)
where
[tex]\alpha = angular\ acceleration[/tex]
Thus from eqn (1), (2) and (3):
[tex]\alpha = \frac{5\mu_{k}g}{2R}[/tex]
Now, the time taken is given by kinematic eqn:
[tex]\omega' = \omega + \alpha t[/tex]
[tex]\omega' = 0 +\frac{5\mu_{k}g}{2R} t[/tex]
[tex]\omega' = \frac{v}{r}[/tex]
[tex]\frac{v}{r} = \frac{5\mu_{k}g}{2R} t[/tex]
t = [tex]\frac{2\times 5.90}{5\times 1.05\times 9.8} = 0.197\ s[/tex]