Answer:0.061
Explanation:
Given
[tex]T_C=300 k[/tex]
Temperature of soup [tex]T_H=340 K[/tex]
heat capacity of soup [tex]c_v=33 J/K[/tex]
Here Temperature of soup is constantly decreasing
suppose T is the temperature of soup at any instant
efficiency is given by
[tex]\eta =\frac{dW}{Q}=1-\frac{T_C}{T}[/tex]
[tex]dW=Q(1-\frac{T_C}{T})[/tex]
[tex]dW=c_v(1-\frac{T_C}{T})dT[/tex]
integrating From [tex]T_H[/tex] to [tex]T_C[/tex]
[tex]\int dW=\int_{T_C}^{T_H}c_v(1-\frac{T_C}{T})dT[/tex]
[tex]W=\int_{T_C}^{T_H}33\cdot (1-\frac{300}{T})dT[/tex]
[tex]W=c_v\left [ T-T_C\ln T\right ]_{T_H}^{T_C}[/tex]
[tex]W=c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ][/tex]
Now heat lost by soup is given by
[tex]Q=c_v(T_C-T_H)[/tex]
Fraction of the total heat that is lost by the soup can be turned is given by
[tex]=\frac{W}{Q}[/tex]
[tex]=\frac{c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]}{c_v(T_C-T_H)}[/tex]
[tex]=\frac{T_C-T_H-T_C\ln (\frac{T_C}{T_H})}{T_C-T_H}[/tex]
[tex]=\frac{300-340-300\ln (\frac{300}{340})}{300-340}[/tex]
[tex]=\frac{-40+37.548}{-40}[/tex]
[tex]=0.061[/tex]